

SRI LANKA

Association of Accounting Technicians of Sri Lanka

Level I Examination - July 2022

Suggested Answers

(102) BUSINESS MATHEMATICS AND STATISTICS (BMS)

Association of Accounting Technicians of Sri Lanka

No.540,Ven. Muruththettuve Ananda Nahimi Mawatha,
Narahenpita, Colombo 05.
Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA
Level I Examination - July 2022
(102) BUSINESS MATHEMATICS AND STATISTICS SUGGESTED ANSWERS
(Total 40 Marks)
SECTION - A

Suggested Answers to Question One:

1.1 (3)

$$
\begin{aligned}
& =-5 x^{2}-4 x+12 \\
& =-5 x^{2}-10 x+6 x+12 \\
& =-5 x(x+2)+6(x+2) \\
& =(x+2)(-5 x+6)
\end{aligned}
$$

1.2 (4)

$$
\begin{aligned}
& S=X(1+r)^{n} \quad X=50,000, \quad r=7 \%=0.07, \quad n=3 \\
& S=50,000 \times(1.07)^{3} \\
& S=61,252.15
\end{aligned}
$$

$$
\text { Total interest }=61,252.15-50,000=\text { Rs.11,252 }
$$

1.3 (4)

$$
Y=0.33+0.667 x \quad X=250
$$

$$
Y=0.33+0.667 \times 250
$$

$$
Y=167.080
$$

The expected profit = Rs.167,080

1.4 (4)

$Q=\frac{q 1}{q 0} \times 100$
$Q=\frac{10}{12} \times 100=83 \%$
(03 marks)

1.5 (2)

No of Blue marbles 06
No of Green marbles 04
Total no of marbles 10
$P($ Blue $)=\frac{6}{10} \quad P($ Green $)=\frac{4}{10}$
$P($ Blue and Green $)=\frac{6}{10} \times \frac{4}{10}=\frac{\mathbf{2 4}}{\mathbf{1 0 0}}$

1.6 (2)

$$
\begin{aligned}
& \mathbf{M}_{\mathbf{d}}=\mathbf{L}_{\mathbf{1}}+\frac{\left(\frac{\mathbf{n}}{\mathbf{2}}-\mathbf{F}_{\mathbf{c}}\right)}{\mathbf{f m}} \times \mathbf{c} \\
& \mathbf{M d}=27.5+\frac{(30-20)}{12} \times 8 \\
& \underline{\mathbf{M d}}=\mathbf{3 4 . 2}
\end{aligned}
$$

1.7 (1)

$$
\begin{array}{lll}
\mathbf{T}_{\mathbf{n}}=\mathbf{a r}^{\mathbf{n - 1}} & \mathrm{a}=2, & \mathrm{r}=3, \\
\mathrm{~T}_{6}=2 \times 3^{5} & & \mathrm{n}=6 \\
\mathbf{T}_{6}=\mathbf{4 8 6} & &
\end{array}
$$

$1.8 \quad$ (4)

$$
\begin{aligned}
& \text { AER }=(1+r / N)^{N}-1 \quad \mathrm{r}=0.08, \quad \mathrm{~N}=4 \\
& \text { AER }=(1+0.08 / 4)^{4}-1 \\
& \text { AER }=0.0824
\end{aligned}
$$

AER $=8.24 \%$
$1.9 \quad$ (4)
$\hat{Y}=\hat{T} \times \hat{S}$
$\hat{Y}=9,575 \times 0.86$
$\underline{\widehat{\hat{Y}}=8,235}$
(03 marks)
1.10 (3)

PV of Annuity $=x\left(\frac{1}{r}-\frac{1}{r(1+r)^{n}}\right)$
PV of Annuity $=14,000 \times\left(\frac{1}{0.09}-\frac{1}{0.09(1+0.09)^{5}}\right)$
$\mathrm{x}=14,000, \quad \mathrm{n}=5, \quad \mathrm{r}=0.09$
$\underline{P V=R s .54,455}$
(03 marks)
1.11
A
B $\longrightarrow(4)$
(01 mark each, 04 marks)
1.12

1. Index numbers by their nature give only general indications of changes over a period.
2. Index numbers are based on sample data. If the sample units have not been selected randomly, index number will give wrong figures.
3. In case sample size is extremely limited, index number will give wrong figures.
4. At times, index number can be manipulated by those who are in authority. This is purposely done to support their viewpoint.
5. A number of formulas can be used in index number construction. These will give different results.
6. Index numers with the same base and items are useful for a short period. One has, therefore to ensure that index does not use very remote year as the base.
7. One who is interpreting an index number must be familiar with general aspects of the economy and factors relevant in this regard.
8. So many methods are used to calculate the index numbers and different methods give different results.
1.13

$$
\begin{gathered}
S K=\frac{3\left(\bar{X}-M_{d}\right)}{S} \quad \text { Coefficient of Skewness } /=\frac{3(\text { Mean }- \text { Median })}{\text { Standard Deviation }} \\
S K=\frac{3(74,500-83,000)}{1,900} \\
S K=\frac{-25,500}{1,900} \\
\underline{S K}=-\mathbf{1 3 . 4 2}
\end{gathered}
$$

1.14 True
(01 mark)
1.15 False
(01 mark)
(Total 40 marks)

End of Section A

Suggested Answers to Question Two:

Chapter 01 - Fundamental Concepts of Mathematics

(a)

$$
\begin{align*}
& 9 a+4 b=42 \tag{1}\\
& 5 a+3 b=28 \tag{2}
\end{align*}
$$

(1) $\times 3=27 a+12 b=126$
(2) $\times 4=20 a+12 b=112$
(3) - (4) $\Rightarrow 7 a=14$

$$
\underline{a}=\mathbf{2}
$$

(1) $=>9 \times 2+4 b=42$

$$
18+4 b=42
$$

$$
\begin{gathered}
4 b=42-18 \\
4 b=24 \\
\underline{b}=6
\end{gathered}
$$

(b)

Assume that, the Profit of business A - Rs. \times million.
Therefore Profit of business B-Rs. $2 x$ million.

$$
\begin{array}{r}
x+2 x=6 \\
3 x=6 \\
x=2
\end{array}
$$

Profit of business A = Rs. 2 Million
Profit of business $B=$ Rs. 4 Million
(c)

Male		Female
3	$:$	5
Male $=>3 / 8$		Female $=>5 / 8$

Difference between two ratios is 2
No of female employees $=\frac{120}{2} \times 5=\underline{\underline{300}}$

Or difference $2 X=120$

$$
X=60
$$

$$
60 \times 5=300
$$

(03 marks)
(Total 10 marks)

Suggested Answers to Question Three:

Chapter 03 - Financial Operative Measures for Business

(a)
(i)

Total Cost (TC) Function = Variable Cost + Fixed Cost

$$
=-q^{2}+32 q+496,800
$$

Total Revenue (TR) Function $=$ Demand \times Number of units

$$
\begin{aligned}
& =(400-q) q \\
& =\mathbf{4 0 0 q}-\mathbf{q}^{2}
\end{aligned}
$$

(ii) At the Break Even Point;

$$
\begin{aligned}
\text { TR } & =T C \\
400 q-q^{2} & =-q^{2}+32 q+496,800 \\
400 q-32 q & =496,800 \\
368 q & =496,800
\end{aligned}
$$

$$
q=1,350 \text { units }
$$

\therefore Break-even quantity $=1,350$ units
(04 marks)
(b)

TC $=4 q^{2}-16 q+600,000$
Marginal Cost (MC) Function $=\frac{d(T C)}{d q}$

$$
\begin{aligned}
\frac{\mathrm{d}(\mathrm{TC})}{d q} & =4 q^{2}-16 q+600,000 \\
\underline{\underline{\mathbf{M C}}} & =8 q-16
\end{aligned}
$$

When costs is minimize,

$$
\begin{aligned}
\frac{d T C}{d q} & =0 \\
8 q-16 & =0 \\
q & =2
\end{aligned}
$$

The cost-minimizing level of production/ output $=\mathbf{2 , 0 0 0}$ units

Suggested Answers to Question Four:

Chapter 05 - Comparing Two Quantitative Variables

(a)

$$
\sum X=5,950 \quad \sum Y=106, \quad \sum X Y=82,030, \quad \sum X^{2}=4,534,500, \quad n=8
$$

\mathbf{x}	\mathbf{y}	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$
660	11	7,260	435,600
750	14	10,500	562,500
650	12	7,800	422,500
730	13	9,490	532,900
540	6	3,240	291,600
900	18	16,200	810,000
870	17	14,790	756,900
850	15	12,750	$\mathbf{7 2 2 , 5 0 0}$
$\mathbf{5 , 9 5 0}$	$\mathbf{1 0 6}$	$\mathbf{8 2 , 0 3 0}$	$\mathbf{4 , 5 3 4 , 5 0 0}$

$\mathbf{b}=\frac{\mathbf{n} \sum \mathbf{X Y}-\sum \mathbf{X} \sum \mathbf{Y}}{\mathbf{n} \sum \mathbf{X}^{\mathbf{2}}-\left(\sum \mathbf{X}\right)^{\mathbf{2}}}$
$\mathrm{b}=\frac{(8 \times 82,030)-(5,950 \times 106)}{(8 \times 4,534,500)-5,950^{2}}$
b $=\frac{656,240-630,700}{32,276,000-35,402,500}$
b $=\frac{25,540}{873,500}$
$b=0.029$
$\mathbf{a}=\overline{\boldsymbol{Y}}-\boldsymbol{b} \overline{\boldsymbol{X}}$
$=\frac{\varepsilon y}{n}-\frac{b \varepsilon x}{n}$
$=\frac{106}{8}-\left[0.029 \times \frac{5,950}{8}\right]$
= 13.25-21.57
$a=-8.32$

The equation,

$$
\begin{aligned}
& Y=a+b x \\
& Y=-8.32+0.029 x \\
& \underline{\underline{Y}}=-\mathbf{8 . 3 2 + 0 . 0 2 9 x} \\
& \hline
\end{aligned}
$$

(b)

Annual income of a family is Rs.800,000/-.
Then,
Substitute $\mathrm{x}=800$

$$
\begin{aligned}
& Y=-8.32+0.029 x \\
& Y=-8.32+0.029 \times 800 \\
& Y=-8.32+23.2 \\
& Y=\underline{\mathbf{1 4 . 8 8}}
\end{aligned}
$$

Expected annual education expenditure $=\underline{\underline{\text { Rs. 14,880 }}}$
(03 marks)
(Total 10 marks)

Suggested Answers to Question Five:

Chapter 04 - Data Presentation and Descriptive Measures

(a)

Interval	\boldsymbol{f}	\boldsymbol{x}	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}$
$20-29$	8	24.5	196	4,802
$30-39$	6	34.5	207	$7,141.50$
$40-49$	5	44.5	222.5	$9,901.25$
$\mathbf{5 0 - 5 9}$	21	54.5	$1,144.5$	$62,375.25$
$60-69$	14	64.5	903	$58,243.50$
$70-\mathbf{7 9}$	6	74.5	447	$33,301.50$
	$\mathbf{6 0}$		$\mathbf{3 , 1 2 0}$	$\mathbf{1 7 5 , 7 6 5}$

$\mathrm{L}_{1}=49.5, \quad \Delta_{1}=21-5 \fallingdotseq 16 \mathrm{~A} \quad \Delta_{2}=21 \wedge_{14}-7 \mid \quad \mathrm{C}=10$

$$
\begin{aligned}
\boldsymbol{M}_{o} & =\boldsymbol{L}_{i}+\left[\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}}\right] \times \boldsymbol{C} \\
M_{o} & =49.5+\left[\frac{16}{16+7}\right] \times 10 \\
& =49.5+6.96 \\
\boldsymbol{M}_{\boldsymbol{o}} & =\mathbf{5 6 . 4 6}
\end{aligned}
$$

Mode class is 50-59

$$
\text { (b) Mean } \begin{aligned}
& =\frac{\sum f x}{\sum f} \\
& =\frac{3,120}{60} \\
& =\underline{\underline{\mathbf{5 2}}}
\end{aligned}
$$

(c)

Standard Deviation $=\sqrt{\frac{\sum f x^{2}}{\Sigma f}-\bar{x}}$
$=\sqrt{\frac{175,765}{60}-52^{2}}$
$=\sqrt{2,929.42-2,704}$
$=\sqrt{225.42}$
$=\underline{\underline{15.01}}$
(04 marks)
(Total 10 marks)

End of Section B

Suggested Answers to Question Six:

Chapter 02 - Financial Mathematics for Business

(A)

$$
\begin{aligned}
\text { Installment } & =\frac{P x r(1+r)^{n}}{(1+r)^{n}-1} \\
& =\frac{600,000 \times 0.10(1.10)^{5}}{(1.1)^{5}-1}
\end{aligned}
$$

x = Rs. 158, 278/-

Annual installment of the loan = Rs. 158,278
(03 marks)

Chapter 02 - Financial Mathematics for Business

(B)
(a)

(04 marks)
(b)

	\underline{O} Option X	\underline{O} Option Y
Investment	600000	800000
NPV	$\mathbf{2 1 , 5 0 0}$	59,820

The highest NPV is 59,820. Therefore Project Y must be selected.

(C)

Chapter 06 - Probability and its Applications

(a) The probability that the employee is a male $-\mathrm{P}($ Male $)=\frac{45}{100}=\frac{9}{20}=45 \%=\underline{\underline{\mathbf{0 . 4 5}}}$
(02 marks)
(b) The probability that the employee is a female, given that she is a manager

$$
\begin{aligned}
\mathbf{P}(\mathbf{B} / \mathbf{A}) & =\frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})} \\
& =\frac{7}{15} \\
& =0.47
\end{aligned}
$$

(D)

Chapter 06 - Probability and its Applications

(a)

(b) X : Weight of a fish caught by a fisherman (kg)

$$
\begin{array}{r}
\mu=7.5 \\
\boldsymbol{Z}=\frac{\mathbf{x}-\mu}{\boldsymbol{\sigma}} \\
Z=\frac{\mathrm{X}-7.8}{1.8}
\end{array}
$$

$X=10$,

$$
\begin{aligned}
Z & =\frac{10-7.5}{1.8} \\
Z & =\frac{2.5}{1.8} \\
& =1.388 \text { or } 1.39 \\
\underline{Z} & =0.4177
\end{aligned}
$$

* The probability that the fisherman is catching a fish whose weight is more than 10 kg is 0.0823 or 8.23\%.

(04 marks)
(Total 20 marks)

Notice:

These answers compiled and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designed especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

© 2021 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

