

Association of Accounting Technicians of Sri Lanka

Level I Examination - January 2023

Suggested Answers

(102) BUSINESS MATHEMATICS AND STATISTICS (BMS)

Association of Accounting Technicians of Sri Lanka
No.540,Ven. Muruththettuve Ananda Nahimi Mawatha,
Narahenpita, Colombo 05.
Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA
Level I Examination - January 2023
(102) BUSINESS MATHEMATICS AND STATISTICS SUGGESTED ANSWERS

Suggested Answers to Question One:
1.1 (4)
$3-\frac{2}{3} x=1$

$$
2=\frac{2}{3} x
$$

$$
\underline{X=3}
$$

1.2 (4)

$$
\begin{aligned}
& S=X(1+r)^{n} \\
& S=20,000 \times 1.08^{3} \\
& S=25,194 \\
& \text { Interest }=25,194-20,000=\underline{\text { Rs. } 5,194}
\end{aligned}
$$

1.3 (3)

(03 marks)

1.4 (1)

$$
\begin{aligned}
& P=\frac{P 1}{P 0} \times 100 \\
& P=\frac{1,000}{1,200} \times 100=\underline{\mathbf{8 3 \%}}
\end{aligned}
$$

(03 marks)
1.5 (1)

$$
\begin{aligned}
& r= \frac{\mathrm{n} \sum \mathrm{xy}-\sum \mathrm{x} \cdot \sum \mathrm{y}}{\sqrt{\left(\mathrm{n} \sum \mathrm{x} 2-\left(\sum \mathrm{x}\right) 2\right)\left(\mathrm{n} \sum \mathrm{y} 2-\left(\sum \mathrm{y}\right) 2\right)}} \\
& r= \frac{8 \times 160-44 \times 30}{\sqrt{(8 \times 284-442)(8 \times 120-302)}} \\
& r=\frac{-40}{20,160} \\
&=\underline{\underline{\mathbf{0}} \mathbf{0 . 2 8}}
\end{aligned}
$$

(03 marks)

1.6 (2)

$\mathrm{L}_{1}=30.5, \quad \Delta_{1}=32-25=7 \quad \mathrm{C}=10$

$$
\begin{gathered}
\Delta_{2}=32-30=2 \\
\boldsymbol{M}_{\boldsymbol{o}}=\boldsymbol{L}_{\boldsymbol{i}}+\left[\frac{\Delta_{\mathbf{1}}}{\Delta_{1}+\Delta_{2}}\right] \times \boldsymbol{C} \\
\int M_{o}=30.5+\left[\frac{7}{7+2}\right] \times 10 \mathrm{~A} \\
\boldsymbol{M}_{\boldsymbol{o}}=\underline{\underline{\mathbf{3 8} .3}}
\end{gathered}
$$

(03 marks)
1.7 (2)

$$
P(X<3)=0.35+0.30=\mathbf{0 . 6 5}
$$

(03 marks)
1.8 (2)

$$
\begin{aligned}
& \operatorname{EAR}=(1+\mathrm{r} / \mathrm{N})^{\mathrm{N}}-1 \\
& \operatorname{EAR}=(1+0.12 / 2)^{2}-1=\underline{\underline{\mathbf{1 2 . 3 6 \%}}}
\end{aligned}
$$

$1.9 \quad$ (2)

$$
\begin{array}{ll}
S=X(1+r / N)^{n \times N} & x=100,000, \quad n=2, \quad r=0.16, \quad N=4 \\
S=100,000(1+0.16 / 4)^{2 \times 4} & \\
S=\text { Rs. 136, 857/- } &
\end{array}
$$

1.10

(3)

$$
Y=2,439.80-145.4 \mathrm{X}
$$

X value for year 2023 is 7

$$
\begin{aligned}
\therefore \mathrm{T} & =2,439.80-145.4 \times 7 \\
& =\underline{1,422}
\end{aligned}
$$

(03 marks)
1.11
$A \longrightarrow$
$\mathrm{B} \longrightarrow$
C
$\mathrm{D} \longrightarrow$
(01 mark each, 04 marks)
1.12

$$
23+27=50
$$

The number of workers in this company who own a vehicle $=50$
1.13

$$
\begin{aligned}
\mathbf{T n} & =\mathbf{a r}^{\mathbf{n}-\mathbf{1}} \\
\mathrm{T} 12 & =3 \times 2^{12-1}=6,144
\end{aligned}
$$

1.14 False

$$
\mathrm{T} 12=3(2)^{11}=\underline{\underline{6,144}} \mathrm{~S}\|\quad \mathrm{~A}\| \| A
$$

(02 marks)
(01 mark)
1.15 True
(01 mark)
(Total 40 marks)

Suggested Answers to Question Two:

Chapter 01 - Fundamental Concepts of Mathematics

(a)

$$
\begin{align*}
& 2 x+3 y=0 \tag{1}\\
& 3 x+4 y=5 \tag{2}
\end{align*}
$$

(1) $\times 3=6 x+9 y=0$
(2) $x 2=6 x+8 y=10$
(3) - (4)

$$
y=-10
$$

(1) $2 x+3 y=0$
$2 x+3(-10)=0$
$2 x=30$
$\underline{\underline{x}=15}$
(b)

Ratio
A
4 :

Proportion $\frac{4}{10}$
$\frac{3}{10}$ $\frac{3}{10}$
(i)Total Investment $\quad=1,200,000 \times \frac{10}{3}=\boldsymbol{R} \boldsymbol{s} .4,000,000$
(ii) Investment made by $A=4,000,000 \times \frac{4}{10}=\boldsymbol{R s}$. $1,600,000$

> Or
> Investment made by $A=1,200,000 \times \frac{4}{3}=\boldsymbol{R s} . \mathbf{1}, \mathbf{6 0 0}, 000$
(02 marks)
(c)

Negative percentage for COVID-19	$=30 \%$
No of employees negative for COVID-19	$=180$
No of employees positive for COVID-19	$=180 \times \frac{70}{30}=\underline{\underline{\mathbf{4 2 0}}}$

Suggested Answers to Question Three:

Chapter 03 - Financial Operative Measures for Business
(a)

Total Cost (TC) Function = Variable Cost + Fixed Cost
$=\underline{\underline{5 q^{2}+24 q+90,000}}$
Total Revenue (TR) Function $=$ Demand \times Quantity

$$
\begin{aligned}
& =(39+5 q) \times q \\
& =\underline{39 q}+5 \mathbf{q}^{2}
\end{aligned}
$$

(b)

Marginal Cost (MC) Function $=\frac{\mathrm{d}(\mathrm{TC})}{d q}$

$$
\frac{\mathrm{d}(\mathrm{TC})}{d q}=\frac{\mathrm{d}(5 \mathrm{q} 2+24 \mathrm{q}+90,000)}{d q}
$$

$\underline{\underline{M C}=10 q+24}$
(c) At the Break Even Point;

$$
\begin{aligned}
T R & =T C \\
39 q+5 q^{2} & =5 q^{2}+24 q+90,000 \\
39 q-24 q & =90,000 \\
15 q & =90,000 \\
\mathbf{q} & =\mathbf{6 , 0 0 0} \text { units }
\end{aligned}
$$

\therefore Break-even quantity $=6,000$ units

Suggested Answers to Question Four:

Chapter 05 - Comparing Two Quantitative Variables

(a) $\sum X=42, \quad \sum Y=4.57, \quad \sum X Y=27.65, \quad \sum X^{2}=280, n=8$

\mathbf{x}	\mathbf{y}	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$
3	0.41	1.23	9
4	0.59	2.36	16
1	0.18	0.18	1
5	0.65	3.25	25
4	0.57	2.28	16
7	0.69	4.83	49
10	0.84	8.4	100
8	0.64	5.12	64
$\mathbf{4 2}$	$\mathbf{4 . 5 7}$	$\mathbf{2 7 . 6 5}$	$\mathbf{2 8 0}$

$\mathbf{b}=\frac{\mathbf{n} \sum \mathbf{X Y}-\sum \mathbf{X} \sum \mathbf{Y}}{\mathbf{n} \sum \mathbf{X}^{\mathbf{2}}-\left(\sum \mathbf{X}\right)^{\mathbf{2}}}$
$\mathrm{b}=\frac{(8 \times 27.65)-42 \times 4.57}{(8 \times 280)-42^{2}}$
b $=\frac{221.2-191.94}{2,240-1,764}$
b $=\frac{29.26}{476}$
$b=0.0615$

$$
\begin{aligned}
\mathbf{a} & =\overline{\boldsymbol{Y}}-\boldsymbol{b} \bar{X} \\
& =\frac{\varepsilon y}{n}-\frac{b \varepsilon x}{n} \\
& =\frac{4.57}{8}-\left[0.0615 \times \frac{42}{8}\right] \\
& =0.571-(0.0615 \times 5.25) \\
& =0.571-0.323 \\
\underline{a} & =0.25
\end{aligned}
$$

Least Square Regression Line,

$$
\begin{aligned}
& Y=a+b x \\
& \boldsymbol{Y}=\mathbf{0 . 2 5 + 0 . 0 6 \boldsymbol { x }} \\
& \hline \hline
\end{aligned}
$$

(b) Click and open the email when $x=900$

$$
\begin{aligned}
& Y=a+b x \\
& Y=0.25+0.06 \times \underline{\underline{900}} 1,000 \\
& =0.25+0.06 \times 0.9 \\
& =0.25+0.054 \\
& =0.304
\end{aligned}
$$

Expected proportion of subscribers $=0.3$

(03 marks)
(Total 10 marks)

Suggested Answers to Question Five:

Chapter 04 - Data Presentation and Descriptive Measures

(a)

Interval	Mid Point (\boldsymbol{x})	f	Cumulative Frequency ($C f$)		$f \mathrm{x}^{2}$
30-39	34.5	13	13	448.5	15,473.25
40-49	44.5	15	28	667.5	29,703.75
50-59	54.5	22	50	1,199	65,345.50
60-69	64.5	25	75	1,612.5	104,006.25
$70-79$ (Median Class)	74.5	${ }^{35}$	$L A N^{110}$	$2,607.5$	194,258.75
80-89	84.5	28	138	2,366	199,927.00
90-99	94.5	22	160	2,079	196,465.50
		160		10,980	805,180.00

(a) Median (Md)

$$
\frac{n}{2}=80, \text { Median Class } 69.5-79.5(70-79)
$$

$L_{1}=69.5$
$\mathrm{n}=160$
$\mathrm{F}_{\mathrm{c}}=75$
$F_{m}=35$
$C=79.5-69.5=10$
$\mathrm{Md}=\mathrm{L}+\frac{\left(\frac{n}{2}-F c\right)}{f m} \times c$

$$
\begin{aligned}
& \mathrm{Md}=69.5+\frac{(80-75)}{35} \times 10 \\
& \mathrm{Md}=69.5+1.43 \\
& \underline{\mathbf{M d}=\mathbf{7 0 . 9 3}}
\end{aligned}
$$

(03 marks)
(b)

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
& =\underline{10,980} \\
& =\underline{\underline{68.625}}
\end{aligned}
$$

(c)
$\begin{aligned} \text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\bar{x}^{2}} \\ & =\sqrt{\frac{805,180}{160}-68.625^{2}} \\ & =\sqrt{5,032.375-4,709.391} \\ & =\sqrt{322.984} \mathrm{R} \mid \text { |A N| A } \\ & =\underline{\underline{\mathbf{1 7 . 9 7}}}\end{aligned}$
(04 marks)
(Total 10 marks)

Suggested Answers to Question Six:

(A)

Chapter 02 - Financial Mathematics for Business

(a)
$\mathrm{A}=\frac{\mathrm{SR}^{\mathrm{n}}(\mathrm{R}-1)}{\mathrm{R}^{\mathrm{n}}-1}$
$=\frac{700,000 \times(1+0.08)^{5}(1+0.08-1)}{(1+0.08)^{5}-1}$

$$
=\frac{82,282.3723}{0.4693}
$$

$$
=175,319.52
$$

Alternative method

$$
\begin{aligned}
A & =\frac{x\left[1-(1+r)^{-n}\right]}{r} \\
700,000 & =\frac{x\left[1-1.08^{-5}\right]}{0.08} \mathrm{~S}=700,000, n=5, r=0.08 \\
x & =\frac{700,000 \times 0.08}{\left[1-1.08^{-5}\right]} \\
x & =\underline{175,319.52}
\end{aligned}
$$

Annual Installment is Rs.175,319.52
(03 marks)
(b)

Year	Loan at Beginning	Interest @ 8\%	Capital Repayment	Interest	Capital at year end
$\mathbf{1}$	$700,000.00$	$56,000.00$	$19,319.52$	$175,319.52$	$580,680.48$
$\mathbf{2}$	$580,680.48$	$46,454.00$	$128,865.00$	$175,319.52$	$451,815.48$
$\mathbf{3}$	$451,815.48$	$36,145.00$	$139,174.52$	$175,319.52$	$312,640.96$
$\mathbf{4}$	$312,640.96$	$25,011.00$	$150,308.52$	$175,319.52$	$162,332.44$
$\mathbf{5}$	$162,332.44$	$12,986.59$	$162,332.00$	$175,319.52$	

(03 marks)
(B)

Chapter 02 - Financial Mathematics for Business

(a)

Net Present Value of Project $\mathrm{A}=\boldsymbol{+ 1 7 , 9 2 5}$
Net Present Value of Project B = $(\mathbf{1 6 , 6 3 1})$

Alternate Answer

Year	0	1	2	3
Cash flow	(100000)	60000	45000	40000

NPV = Present value of cash inflow - Present value of cash outflow

$$
\begin{aligned}
& P V=\frac{X}{(1+r)^{n}} \quad r=0.12 \quad P V=\frac{X}{1.12^{n}} \\
& N P V=\frac{60,000}{1.12^{1}}+\frac{45,000}{1.12^{2}}+\frac{40,000}{1.12^{3}}-100,000 \\
& \begin{aligned}
N P V & =117,916.36-500,000 \\
& =17,916.36
\end{aligned}
\end{aligned}
$$

Year	0	1	2	3
Cash flow	$(200,000)$	103,000	70,000	50,000

NPV = Present value of cash inflow - Present value of cash outflow

$$
\begin{aligned}
& P V=\frac{X}{(1+r)^{n}} \quad r=0.12 \quad P V=\frac{X}{1.12^{n}} \\
& N P V=\frac{103,000}{1.12^{1}}+\frac{70,000}{1.12^{2}}+\frac{50,000}{1.12^{3}}-200,000 \\
& \begin{aligned}
N P V & =183,356.87-200,000 \\
& =(16,643.13)
\end{aligned}
\end{aligned}
$$

(05 marks)
(b)

	Project A	Project B
Investment	100,000	200,000
NPV	17,925	$(16,631)$

Net Present Value of project A is positive. Project B have negative NPV.
Therefor Project A is the best investment.
(C)

Chapter 06 - Probability and its Applications

A - Student passes a written exam
B - Student passes a practical exam

$$
P(W)=1 / 2 \quad P(P)=1 / 3 \quad P(W \cap P)=1 / 4
$$

$P(W / P)$ - Probability that a student passes the written exam given that he passed the practical exam.

$$
\begin{aligned}
\mathbf{P}(\mathbf{W} / \mathbf{P}) & =\frac{\mathbf{P}(\mathbf{W} \cap \mathbf{P})}{\mathbf{P}(\mathbf{P})} \\
= & \frac{1 / 4}{1 / 3} \\
= & \mathbf{3} / 4 \text { Or } 0.75
\end{aligned}
$$

(D)

Chapter 06 - Probability and its Applications

X : Height of the soldier (cm)

$$
\begin{array}{r}
\mu=170 \quad \sigma=5 \\
Z=\frac{X-\mu}{\sigma} \\
Z=\frac{X-170}{5}
\end{array}
$$

$$
X=180
$$

$$
Z=\frac{180-170}{5}
$$

$$
Z=+2
$$

$$
\begin{aligned}
\operatorname{Pr}(x>180) & =P(z>2) \\
& =0.5-0.4772 \\
& =\underline{\mathbf{0 . 0 2 2 8} \text { or } \mathbf{2 . 2 8 \%}}
\end{aligned}
$$

Notice:

These answers compiled and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designed especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

© 2021 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

